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Abstract

An expression for the derivatives of eigenvalues and eigenvectors of non-conservative systems is
presented. Contrary to previous methods that use state space form (2N-space) to consider damping,
proposed method solves the eigenpair derivatives of damped system explicitly. The computation size of
N-order is maintained and the eigenpair derivatives are obtained simultaneously from one equation so that
it is efficient in CPU time and storage capacity. Moreover, this method can be extended to asymmetric non-
conservative damped systems. Although additional problems are generated contrary to the eigenpair
sensitivity methods of symmetric systems, in asymmetric case, an algebraic method for the eigenpair
derivatives can be obtained through similar procedure. The proposed expression is derived by combining
the differentiations of the eigenvalue problem and normalization condition into one linear algebraic
equation. The numerical stability is proved by showing non-singularity of the proposed equation, and the
efficiency of the derived expression is illustrated by considering a cantilever beam with lumped dampers and
a whirling beam.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Natural frequencies and mode shapes of systems are essential to understand dynamic behavior
of structure. However, design parameters can be varied with damage, deterioration, corrosion,
etc. and this causes variation in natural frequency and mode shape. The variation of eigenpair
brings about variation of dynamic behavior of systems and this affects the stability of structure
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directly. Therefore, eigen-sensitivity analysis has played a central part in structural stability
analysis and has emerged as an important area of research. And eigenpair sensitivity is used in
many areas, the optimization of structure subject to natural frequency, system identification, finite
modelling updating, structural control, etc.
A number of methods for eigenpair sensitivity of undamped system have been developed. Fox

and Kapoor [1] finded the eigenpair derivatives with the term of system matrix and eigenpair.
Nelson [2] represented eigenvector derivative by sum of the homogeneous solution and the
particular solution, and Ojalvo [3] and Dailey [4] extended Nelson’s method to the multiple
eigenvalue problem. Modal method [5,6] and its modified one [7,8] approximated the mode shape
derivatives by the linear combination of mode shapes, and Lee and Jung [9,10] presented the
algebraic methods for eigenpair derivatives of systems having the distinct and multiple eigenvalue.
A number of the prescribed methods can be applied to the damped systems. However, almost

eigen-sensitivity methods have to use state space equation based on 2N-space to solve the
problems induced by damping. These methods are at a disadvantage in CPU time and storage
capacity because of double computation size. In order to overcome these drawbacks, Zimoch [11]
presented direct method for the eigenpair derivatives of damped systems without use of state
space equation. However, this method is restricted to mechanical systems because the available
design parameter is limited to the component of the system matrices. Sodipon Adhikari [12]
proposed eigen-sensitivity method based on N-space, too. However, it did not give exact solution
and only is applicable to small sized damped systems. On the other hand, Lee et al. [13,14]
developed analytical method that give exact solutions while it maintain ‘N-space’, but it finds
eigenvalue derivative from classical method as before.
Many eigenpair sensitivity methods are restricted to systems whose characteristic matrices are

symmetric. However, a number of real systems have asymmetric mass, damping, and stiffness
matrices, for example, the behavior of structure in fluid, moving vehicles on roads, the study of
aircraft flutter and gyroscopic systems. It is difficult to solve the eigenpair sensitivity of
asymmetric systems by using the previous methods because of additional problems due to
asymmetric characteristic matrices. And this difficulty is possibly motivation for authors that have
tried to solve the eigenpair sensitivity of asymmetric systems.
Fox and Kapoor [1] presented exact expression for eigenpair derivatives of symmetric

undamped systems in the earliest time and many authors [15–17] have extended his method [1] to
asymmetric systems. Rudisill [18] solved the eigenvector derivatives of general matrices
analytically and Murthy and Haftka [19] have written an excellent review on calculating the
eigenpair derivatives of general matrices.
However, above methods don’t explicitly consider the damping of systems. Brandon [20]

presented the modal method for asymmetric damped systems. This method solved the problems
due to asymmetric matrices by using the left eigenvector. However, it has disadvantages in CPU
time and storage capacity because it uses state space form to consider damping of systems and
requires many of eigenpair information to find eigenpair sensitivity.
In this paper, an efficient algebraic method for the eigenpair sensitivities of damped systems is

presented. Contrary to previous methods the proposed method finds the eigenvalue and
eigenvector sensitivities simultaneously from one equation. And the proposed method does not
use state space equation (2N-space), instead of it, the method maintain ‘N-space’ because
singularity problem is solved by using only a side condition. The proposed method gives exact
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solutions because it is the analytical method. And it only requires the corresponding eigenpair
information differently from modal methods.
Moreover, an efficient algebraic method for the eigenpair sensitivity of asymmetric damped

systems is derived through similar procedure of symmetric case. The problems due to asymmetric
system matrices are solved by finding the derivatives of eigenvalue and eigenvector
simultaneously. It does not require the left eigenvector and state space form contrary to previous
methods. And the solutions are also exact and numerically stable.

2. Eigenpair sensitivity

2.1. Eigenpair sensitivity in symmetric damped systems

Consider the eigenvalue problem of damped systems with N degrees of freedom described as

ðl2j Mþ ljCþ KÞuj ¼ 0; ð1Þ

where M; C and K are the mass, damping and stiffness matrices, respectively, and n � n
symmetric matrices.M is positive definite, K is positive definite or semi-positive definite and lj is
the jth eigenvalue and uj is the jth eigenvector of systems.
In order to determine the eigenvalue derivatives, the differentiation of Eq. (1) is used. Eq. (1) is

differentiated with respect to a design parameter a; then

ðl2j Mþ ljCþ KÞuj;a ¼ �ð2ljMþ CÞujlj;a � ðl2j M;a þ ljC;a þ K;aÞuj; ð2Þ

where ð�Þ;a represents the derivative of ð�Þ with respect to design parameter a:
Pre-multiplying at each side of Eq. (2) by uTj gives

uTj ðl
2
j Mþ ljCþ KÞuj;a ¼ �uTj ð2ljMþ CÞujlj;a � uTj ðl

2
j M;a þ ljC;a þ K;aÞuj: ð3Þ

Eq. (3) can be transposed because it is scalar, and its transposition enables one to eliminate the
left side of it due to symmetry of M; C; K: As a result, the eigenvalue derivative is obtained as
follows:

lj;a ¼ �uTj ðl
2
j M;a þ ljC;a þ K;aÞuj: ð4Þ

However, eigenvector derivative is not solved from Eq. (2) directly, because the coefficient
matrix of left side of Eq. (2) is singular. Hence, a number of studies have focused on the
eigenvector sensitivity generally in the case of symmetric damped systems.

2.1.1. Zimoch’s method
Zimoch [11] presented method for eigenpair sensitivity subject to the components of system

matrices as follows:

@K=@mij ¼ diag½�6l2kuikujk	;

@K=@mii ¼ diag½�3l2ku
2
ik	 ðk ¼ 1; 2;y; 2nÞ;
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@U=@mii ¼ F½lluikuilðll þ 2lkÞ=ðlk � llÞ	 ðlakÞ;

@U=@mii ¼ F½lku
2
ik	 ðl ¼ kÞ;

@U=@mij ¼ F½ð2lkll þ l2l Þðuilujk þ uikujlÞ=ðlk � llÞ	 ðlakÞ;

@U=@mij ¼ F½�2lkuikujk	 ðl ¼ kÞ ðl; k ¼ 1; 2;y; 2nÞ: ð5Þ

This equation uses the component of mass matrix, mij ; as design parameter and similar methods
about damping matrix and stiffness matrix are also presented. It is efficient in CPU time because it
requires only corresponding eigenpair to obtain eigenpair derivatives. However, it cannot use
general design parameters such as area, length, thickness, moment of inertia, etc. In other words,
it is the limited method that is only applicable to discrete systems.

2.1.2. Zeng’s method

Zeng [22] (see Ref. [13]) used the classical modal method for eigenpair derivatives of damped
systems:

uj;a ¼ � ðBþ bAÞ�1
XMa�1

m¼0

½�ðlj � bÞAðBþ bAÞ�1	m

8<
:

þ
XN

k¼1;kaj

lj � b
lk � b

� �Ma ðuku
T
k Þ

lj � lk

þ
lj � b
l�k � b

� �Maðuku
T
k Þ
�

lj � l�k

" #

þ
lj � b
l�j � b

 !Maðfjf
T
j Þ
�

lj � l�j

9=
;ðl0jAþ ljA;a þ B;aÞuj � ðuju

T
j A;aujÞ=2: ð6Þ

Although it is the improved modal method that uses the accelerated and shifted poles, it has
disadvantages in CPU time and storage capacity because it requires many of eigenpair
information for one eigenpair derivative. And state space equation (2N-space) is introduced to
extend damped system, and it gives approximated solutions when truncated modes is used.

2.1.3. Nelson’s method [2]
In this method, the eigenvector derivative is expressed as sum of particular solution and

homogeneous solution as follows:

uj;a ¼ vja þ cjauj; ð7Þ

where cja ¼ �uTj Mvja � 0:5uTj M;auj: homogeneous solution.
The method is known as the most efficient one among previous eigen-sensitivity methods for

undamped systems. Not only its algorithm is simple but also it gives exact solution and only needs
a corresponding eigenpair for eigenpair derivatives. However, it did not consider damping
explicitly, hence it requires state space form to solve damped systems as ever.

2.1.4. Sondipon Adhikari’s method [12]
This is the modal method that deals with damped systems with approximated eigenpair. In this

method, the eigenpair of damped systems is approximated using the eigenpair of undamped
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systems. It maintains N-space, however, it does not give exact solution, and it is only applicable to
small sized damped systems

uj;aE � 0:5ðuTj M;aujÞjj

þ
XN

kaj

1

2ok

ð1� gkjÞu
T
k
*Fi;auj

lj � lk

�
ð1� %gkjÞu�Tk

*Fi;auj

lj þ l�k

" #
ðjk � aðiÞk jjÞ; ð8Þ

where

ljEoj þ 0:5jTj Cjj � i;

ujEjj þ
XN

k¼1

iljðjTk CjjÞjk

ðlj � lkÞðlj � l�k Þ
:

2.2. Eigenpair sensitivity in asymmetric damped systems

Generalized eigenvalue problem for asymmetric damped systems is same as one for symmetric
damped systems:

ðl2j Mþ ljCþ KÞuj ¼ 0; ð9Þ

where lj is the jth eigenvalue, uj is jth eigenvector,M is mass matrix, C is damping matrix and K is
stiffness. In this case, one have to pay attention to that M; C; K is asymmetric system matrices.
By differentiating Eq. (9) with respect to design parameter, Eq. (10) is obtained,

ðl2j Mþ ljCþ KÞuj;a ¼ �ð2ljMþ CÞujlj;a � ðl2j M;a þ ljC;a þ K;aÞuj; ð10Þ

where ð�Þ;a represents the derivative of ð�Þ with respect to design parameter a:
Pre-multiplying at each side of Eq. (10) by uTj ; we have

lj;a ¼ �uTj ðl
2
j Mþ ljCþ KÞuj;a � uTj ðl

2
j M;a þ ljC;a þ K;aÞuj: ð11Þ

Eq. (11) can be transposed due to its scalar and transposing Eq. (11) enables one to eliminate
the first term of right side of Eq. (11) in the case that system matrix M; C; K are symmetric,
because the first term of right side contains eigenvalue problem as Eq. (9). Hence the eigenvalue
derivative is obtained clearly. However, the first term of right side is remained in the case of
asymmetric systems such as Eq. (12) because of MTaM; CTaC and KTaK:

lj;a ¼ �uTj;aðl
2
j M

T þ ljC
T þ KTÞuj � uTj ðl

2
j M

T
;a þ ljC

T
;a þ KT;aÞuj: ð12Þ

Therefore, it is difficult to find the eigenvalue derivative by previous approach that is used in
symmetric systems.
A number of authors have used the left eigenvector to solve above problems due to asymmetric

characteristics. The left eigenvector satisfies the next condition in damped systems,

vTj ðl
2
j Mþ ljCþ KÞ ¼ 0: ð13Þ
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For eigenvalue and eigenvector derivatives, pre-multiplying at each side of Eq. (10) by vTj ; we
can obtain a new equation,

lj;a ¼ �vTj ðl
2
j Mþ ljCþ KÞuj;a � vTj ðl

2
j M;a þ ljC;a þ K;aÞuj: ð14Þ

The first term of right side of Eq. (14) is eliminated because of Eq. (13). Therefore, the
derivative of eigenvalue for asymmetric damped systems is obtained such as

lj;a ¼ �vTj ðl
2
j M;a þ ljC;a þ K;aÞuj: ð15Þ

The left eigenvector serves as the clue that led to solution of the eigenvector derivative for
asymmetric systems in many studies [16,20].

2.2.1. Brandon’s method [20]
Brandon [20] presented the modal method that finds the eigenvector derivative of asymmetric

damped system as sum of several modes:

uj;a ¼
Xn

i¼1;iaj

aijui; ð16Þ

where

aij ¼
�vTi ðA;a þ ljB;aÞuj

ðlj � liÞvTi Bui

; A ¼
K 0

0 �M

" #
and B ¼

C M

M 0

" #
:

In the coefficient part of Eq. (16) this method uses state space form. Therefore, significant
numerical effort is required as the size of the problem doubles. And the method has disadvantages
of the modal method that many eigenpairs are used for one eigenpair derivative and error arises
when truncated in order to reduce the available modes.

3. Proposed method

3.1. Eigenpair sensitivity in symmetric damped systems

3.1.1. Algorithm
The algorithm of the proposed method is simple. The problems due to singularity and damping

are solved simultaneously from the proposed equation. The method uses the derivatives of
eigenvalue problem and the side condition as fundamental equations.
By rearranging Eq. (2) which is the differentiation of eigenvalue problem, one gets

ðl2j Mþ ljCþ KÞuj;a þ ð2ljMþ CÞujlj;a ¼ �ðl2j M;a þ ljC;a þ K;aÞuj: ð17Þ

The eigenvectors of damped system are normalized as follows:

zTj Bzj ¼
uj

liuj

( )T
C M

M 0

" #
uj

ljuj

( )
¼ uTj ð2liMþ CÞuj ¼ 1: ð18Þ
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The derivative of normalization condition is used as side condition. Differentiating Eq. (18)
subject to design variable ðaÞ gives

uTj ð2ljMþ CÞuj;a þ uTj Mujlj;a ¼ �0:5uTj ð2ljM;a þ C;aÞuj: ð19Þ

Because the unknown or interested values are uj;a and lj;a; Eqs. (17) and (19) can be combined
into single matrix form as follows:

l2j Mþ ljCþ K ð2ljMþ CÞuj

uTj ð2ljMþ CÞ uTj Muj

" #
uj;a

lj;a

( )
¼ �

ðl2j M;a þ ljC;a þ K;aÞuj

0:5uTj ð2ljM;a þ C;aÞuj

( )
: ð20Þ

This is the key of the proposed method. Contrary to previous method, the sensitivities of the
eigenvalue and eigenvector are obtained simultaneously from one equation. It is a matter of
course that the method is efficient in CPU time and storage capacity because it maintains N-space
without use of state space equation and finds the eigenpair derivatives simultaneously. The
proposed method requires only corresponding eigenpair information differently from modal
methods, and gives exact solution and guarantees numerical stability.

3.1.2. Numerical stability

Numerical stability is guaranteed by proving non-singularity of the coefficient matrix A# of
proposed Eq. (20). To prove that the coefficient matrix A# is non-singular, introduce the
determinant property such as

detðYTA#YÞ ¼ detðYTÞdetðA#ÞdetðYÞ: ð21Þ

If detðYTA#YÞa0 is proved with the arbitrary non-singular matrix Y; detðA#Þa0 is proved.
Assuming the arbitrary non-singular matrix Y such as

Y ¼
W 0

0 1

" #
; ð22Þ

where W ¼ ½c1;c2?cn�1uj	; uj is the jth eigenvector of systems and w’s are arbitrary vectors to
be independent of uj: W is a n � n matrix and Y is a ðn þ 1Þ � ðn þ 1Þ matrix.
Pre- and post-multiplying A# by YT and Y yields

YTA#Y ¼
W 0

0 1

" #T
l2j Mþ ljCþ K ð2ljMþ CÞuj

uTj ð2ljMþ CÞ uTj Muj

" #
W 0

0 1

" #

¼
WTðl2j Mþ ljCþ KÞW WTð2ljMþ CÞuj

uTj ð2ljMþ CÞW uTj Muj

" #
; ð23Þ

The last column and row of the matrix WTðl2j Mþ ljCþ KÞW is zero because the last column of
W is the eigenvector uj: That is

WTðl2j Mþ ljCþ KÞW ¼
*A 0

0 0

" #
; ð24Þ
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where WTðl2j Mþ ljCþ KÞW is n � n matrix, and this matrix has the rank of n � 1 because lj is
distinct eigenvalue. Therefore the matrix *A of order ðn � 1Þ is non-singular.
And the last elements of the column vectorWTð2ljMþ CÞfj and the row vector f

T
j ð2ljMþ CÞW

are unity due to its normalization condition:

WTð2ljMþ CÞuj ¼
*b

1

( )
; uTj ð2ljMþ CÞW ¼ f*bT 1g; ð25Þ

where *b is non-zero vector. Substituting Eqs. (24) and (25) into Eq. (23) gives

YTA#Y ¼

*A 0 *b

0 0 1

*bT 1 uTj Muj

2
64

3
75: ð26Þ

In order to find the determinant of this matrix, apply the determinant property of partitioned
matrix such as

det
A B

C D

" # !
¼ detA� detðD� CA�1BÞ: ð27Þ

Therefore, the determinant of Eq. (16) is as follows:

detðYTA#YÞ ¼ det
0 1

1 uTj Muj

" #
det *A� ½0 *b	

0 1

1 uTj Muj

" #�1
0

*bT

" #0
@

1
A; ð28Þ

where

½0 *b	
0 1

1 uTj Muj

" #�1
0

*bT

" #
¼ 0 and det

0 1

1 uTj Muj

" #
¼ �1: ð29Þ

Rearranging Eq. (28) yields

detðYTA#YÞ ¼ �detð *AÞa0: ð30Þ

In other words, the matrix A# is non-singular.

3.2. Eigenpair sensitivity in asymmetric damped systems

3.2.1. Algorithm
The proposed method does not require the left eigenvector. The problems due to asymmetric

system matrix are solved by finding the derivatives of eigenvalue and eigenvector simultaneously.
The algorithm of the proposed method is also simple. By rearranging Eq. (10) which is the

differentiation of eigenvalue problem, one gets

ðl2j Mþ ljCþ KÞuj;a þ ð2ljMþ CÞujlj;a ¼ �ðl2j M;a þ ljC;a þ K;aÞuj: ð31Þ
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Eigenvector of damped systems is normalized with using state space form such as

uj

liuj

( )T
C M

M 0

" #
uj

ljuj

( )
¼ uTj ð2liMþ CÞuj ¼ 1: ð32Þ

And we use the differentiation of normalization condition as side condition. Differentiating
Eq. (32) with respect to design variable gives

uTj ð2ljMþ 2ljM
T þ Cþ CTÞuj;a þ 2uTj Mujlj;a ¼ �uTj ð2ljM;a þ C;aÞuj: ð33Þ

Contrary to symmetric systems, the transpositions of mass and damping matrix are appeared in
Eq. (33) because of MTaM; CTaC; and KTaK:
Combining Eqs. (31) and (33) into one linear algebraic equation yields

l2j Mþ ljCþ K ð2ljMþ CÞuj

uTj ð2ljMþ 2ljM
T þ Cþ CTÞ 2uTj Muj

" #
uj;a

lj;a

( )
¼ �

ðl2j M;a þ ljC;a þ K;aÞuj

uTj ð2ljM;a þ C;aÞuj

( )
: ð34Þ

Eq. (34) is the proposed equation. In Eq. (34), the proposed method only requires the
corresponding eigenpair information to find the jth eigenpair sensitivity, and the left eigenvectors
are not required differently to previous method to solve asymmetric systems. The method has
advantages in numerical efforts because it finds eigenpair derivatives simultaneously from one
equation and maintains N-space without the use of state space form. And there is no doubt that it
gives exact solutions.

3.2.2. Numerical stability

Numerical stability is guaranteed by proving non-singularity of the coefficient matrix A� of
Eq. (34).
Arbitrary nonsingular matrices X; Y are introduced to prove that detðA�Þa0; as follows:

X ¼
G 0

0 1

" #
; Y ¼

W 0

0 1

" #
; ð35Þ

where G ¼ ½j1 j2?jn�1 vj	; W ¼ ½c1 c2?cn�1 uj	 and vj is the jth left eigenvector, uj is the jth
right eigenvector of system which satisfy the following condition:

ðl2j Mþ ljCþ KÞuj ¼ 0; vTj ðl
2
j Mþ ljCþ KÞ ¼ 0: ð36Þ

And each jk and ck are the arbitrary vectors to be independent to vj and uj; respectively.
Pre- and post-multiplying the coefficient matrix A� by XT and Y; one has

XTA�Y ¼
C 0

0 1

" #T
l2j Mþ ljCþ K ð2ljMþ CÞuj

uTj ð2ljMþ 2ljM
T þ Cþ CTÞ 2uTj Muj

" #
W 0

0 1

" #

¼
CTðl2j Mþ ljCþ KÞW CTð2ljMþ CÞuj

uTj ð2ljMþ 2ljM
T þ Cþ CTÞW 2uTj Muj

" #
: ð37Þ
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Because the last columns of G and W are the eigenvectors of system, one can rearrange
Eq. (37) as

XTA�Y

*B 0 *c

0 0 c

*dT 2 2uTj Muj

2
64

3
75; ð38Þ

where *B is ðn � 1Þ � ðn � 1Þ non-singular matrix due to distinct eigenvalue lj; c ¼ vTj ð2ljMþ CÞuj

and *c and *d are non-zero matrices.
Using the determinant property of partitioned matrix, the determinant of Eq. (38) is simpli-

fied as

detðXTA�YÞ ¼ detð *BÞ � det
0 c

2 2uTj Muj

" #
�

0

*dT

" #
½ *B	�1½0 *c	

 !

¼ � 2b detð *AÞa0: ð39Þ

We can see that detðXTA�YÞa0 from Eq. (39). Therefore, detðA�Þa0 because the nonsingular
matrix X and Y are non-singular. In other words, the coefficient matrix A� is non-singular matrix.

4. Numerical example

4.1. Eigenpair sensitivity in symmetric damped systems

Numerical example is considered to verify the efficiency and feasibility of the proposed method.
This example is a cantilever beam to be equipped with lumped dampers (see Fig. 1).
It is FEM model composed of 30 elements and 31 nodes. Each node has two degrees of freedom

(vertical displacement, rotation). Both Rayleigh damping ðC ¼ aKþ bMÞ and lumped damping
are considered. The thickness of beam is chosen as design parameter.
Pentium computer with RAM 64M, CPU capacity 266 Hz is used for analysis.
Some eigenpair derivatives to be obtained by the proposed method are represented in Tables 1,

2 and the CPU times of each method are shown in Fig. 2. Zeng’s method for damped systems and
Nelson’s method for undamped systems are most comparable with the proposed method among
previous one. However Nelson’s method requires state space equation to solve damped systems.
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v

Fig. 1. Cantilever beam with lumped dampers.
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As you can see in Fig. 2, the proposed method is more efficient in CPU time than other
methods. To calculate 60 eigenpair derivatives of system, 251:4 s for Zeng’s method, 9:66 s for
Nelson’s method and 1:72 s for the proposed method are required. Even if Zeng’s method is the
improved modal method, state space form is used to solve damped system as ever, and it has a
disadvantage of modal method that many eigenpairs are required for one eigenpair derivative as it
was. Hence Zeng’s method is not efficient in CPU time. However the CPU time of Nelson’s
method is comparatively good. We can find that Nelson’s method is the efficient method although
its calculation speed is slower than the proposed method because of its double size for damped
systems. Fig. 2 shows the efficiency of the proposed method obviously. This is due attributable to
that the proposed method maintains N-space and finds eigenpair derivatives simultaneously.

4.2. Eigenpair sensitivity in asymmetric damped systems

Whirling beam whose system matrices are asymmetric is considered as numerical example. This
example is a gyroscopic system rotating with high speed and has a lumped mass in center of beam
as Fig. 3.

ARTICLE IN PRESS

Table 1

Eigenvalue and its derivatives of system

Mode number Eigenvalues First derivatives

1 �2:3427e� 03� 1:0868eþ 00i 6:6237e� 04� 2:9972e� 01i
2 �2:3427e� 03þ 1:0868eþ 00i 6:6231e� 04þ 2:9972e� 01i
3 �1:4162e� 02� 6:0514eþ 00i 4:5231e� 03� 1:3173eþ 00i
4 �1:4162e� 02þ 6:0514eþ 00i 4:5266e� 03þ 1:3173eþ 00i
5 �3:1855e� 02� 1:4703eþ 01i 8:2032e� 03� 2:4536eþ 00i
6 �3:1855e� 02þ 1:4703eþ 01i 8:2040e� 03þ 2:4536eþ 00i
7 �5:8513e� 02� 2:4733eþ 01i 1:0219e� 02� 3:1193eþ 00i
8 �5:8513e� 02þ 2:4733eþ 01i 1:0245e� 02þ 3:1193eþ 00i
9 �9:5243e� 02� 3:5359eþ 01i 1:0631e� 02� 3:4198eþ 00i
10 �9:5243e� 02þ 3:5359eþ 01i 1:0656e� 02þ 3:4198eþ 00i

Table 2

First eigenvector and its derivative of system

d.o.f. number First eigenvector Derivative

1 �5:6474e� 04� 5:6364e� 04i 1:7040e� 04þ 1:6942e� 04i
2 �3:3629e� 03� 3:3565e� 03i 1:0142e� 03þ 1:0085e� 03i
3 �2:2249e� 03� 2:2208e� 03i 6:7061e� 04þ 6:6697e� 04i
4 �6:5726e� 03� 6:5612e� 03i 1:9789e� 03þ 1:9688e� 03i
5 �4:9294e� 03� 4:9209e� 03i 1:4842e� 03þ 1:4766e� 03i
^ ^ ^
57 �2:8334e� 01� 2:8342e� 01i 8:3339e� 02þ 8:3414e� 02i
58 �4:1107e� 02� 4:1162e� 02i 1:1937e� 02þ 1:1988e� 02i
59 �2:9705e� 01� 2:9714e� 01i 8:7318e� 02þ 8:7410e� 02i
60 �4:1111e� 02� 4:1167e� 02i 1:1937e� 02þ 1:1988e� 02i
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The equation of motion of gyroscopic system is as follows:

M.uðtÞ þ ðCþGÞ’uðtÞ þ ðKþHÞuðtÞ ¼ FðtÞ; ð40Þ

whereM; C; K and F are mass, damping, stiffness and external force matrices, respectively, G is
gyroscopic matrix and H is circulatory matrix that make system matrix asymmetric,

M ¼
M11 0

0 M22

" #
; C ¼

C11 0

0 C22

" #
; G ¼

0 G12

�G12 0

" #
;

K ¼
K11 0

0 K22

" #
; H ¼

0 H12

�H12 0

" #
: ð41Þ

In the case of this system, G and H are represented as

½G12	ij ¼ �2O½M11	ij ; ½H12	ij ¼ �hOLdij: ð42Þ
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Fig. 3. The whirling beam [21].
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And material data are as follows:

m0 ¼ 1 kg=m; M ¼ 1 kg; L ¼ 1 m; K1 ¼ K2 ¼ L2=20 N m; c ¼ h ¼ 1=4 N s m�1;

EIx ¼ 4L3=5p2 N m2; EIy ¼ 9L3=5p2 N m2; O ¼
ffiffiffiffiffiffiffiffiffi
21:6

p
p rad s�1:

Degrees of freedom of system are 20 and the length of beam L is used as design parameter.
Computer that has CPU capacity 266 Hz and Ram 64M is used. Brandon’s method is comparable
to the proposed method and CPU times of each method are compared.
Tables 3 and 4 show some parts of eigenvalue and eigenvector and their derivatives with respect

to design variable and the comparison of CPU times for each method is expressed in Fig. 4.
As you can see in Fig. 4, the analysis time to obtain twenty eigenpair derivatives is 4:06 s for

Bradon’s method and 1:37 s for the proposed method. Because Brandon’s method uses state space
form to solve damped system and requires many eigenpair to find one eigenpair derivative, but the
proposed method maintains N-space by using only a side condition and finds eigenpair derivatives
simultaneously from one equation.

5. Conclusion

The exact expression for the eigenpair derivatives of damped system has been derived. In the
proposed method, the eigenpair sensitivities of damped systems are obtained simultaneously from
one equation. The approach taken here avoids the use of state space equation and considers the
damping problem explicitly by introducing a side condition of differentiation of normalization
condition. Therefore, computation size of N-order can be maintained and the CPU time of the
proposed method can be improved to compare with previous methods.
Moreover, the exact expression for the eigenpair derivatives of asymmetric damped system also

has been derived. Traditional restriction of symmetry has not been imposed on the mass, damping
and stiffness matrices. The method has solved the problems due to asymmetric system matrices by
determining the eigenpair derivatives simultaneously from one equation, contrary to previous
methods that use the left eigenvector to solve asymmetric properties.
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Table 3

Eigenvalue and its derivatives of system

Mode number Eigenvalues Derivatives

1 2.5572e+00 2.6060e+01�4.8587e+01i
2 �2.8132e+00 1.8853e+01+1.7000e+01i

3 �1.5605e�01�8.5386e+00i 6.5060e+00+4.1185e+01i

4 �1.5605e�01+8.5386e+00i �1.6344e+01�3.8273e+01i
5 1.8030e�01�1.2320e+01i 2.0863e+00�2.7679e+00i
6 1.8030e�01+1.2320e+01i 3.1890e+00�1.9467e+01i
7 �3.4271e�01�1.6881e+01i �1.2825e�01+2.9982e+00i
8 �3.4271e�01+1.6881e+01i �7.0710e+01+2.6666e+01i
9 �3.7190e�01�2.9440e+01i 9.2814e+00+1.5815e+01i

10 �3.7190e�01+2.9440e+01i 1.5909e+01�2.8933e+01i
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